

Quantum simulator for the O(3) **nonlinear sigma model**

Sarah Mostame and Ralf Schützhold

Technische Universität Dresden

20.09.2005

Dresden

6 1982, Richard Feynman

Computers based on the laws of quantum physics instead of classical physics can be

used for modeling quantum systems.

- Quantum systems can be simulated with polynomial effort just with using another quantum system.
- 6 For simulating a spin- $\frac{1}{2}$ quantum system with *n* spins:
 - 1. $\mathcal{O}(2^n)$ bits, with classical computer.
 - 2. $\mathcal{O}(n)$ qubits, with quantum computer.

 $|\psi\rangle = C_{00\cdots00} |\uparrow\uparrow\cdots\uparrow\uparrow\rangle + \cdots + C_{11\cdots11} |\downarrow\downarrow\cdots\downarrow\downarrow\rangle$

Simulating strongly interacting quantum field theory, Quantum Chromo-dynamics:

- 6 Strong interactions between gluons and quarks
- 6 Non-perturbative theory
- 6 Re-normalizable in 3+1 dimension
- 6 Asymptotic freedom: $g^2 (p^2 \gg \Lambda_{QCD}^2) \propto \frac{1}{\ln(p^2/\Lambda_{QCD}^2)}$
- 6 Non-vanishing vacuum condensates / trace anomaly: $<\hat{\mathcal{L}}>\neq 0$, $<\hat{T}^{\nu}_{\nu}>\neq 0$
- 6 The theory exhibits instantons

Quantum Chromo-dynamics is very complicated:

$$\mathcal{L} = -\frac{1}{4} F^{\alpha}_{\mu\nu}(x) F^{\mu\nu}_{\alpha}(x) + \cdots$$

- 6 Nonlinear sigma model is strongly interacting quantum field theory (Nontrivial theory \rightarrow Toy model for Quantum Chromo-dynamics).
- Oniversal quantum computers are not available (yet).

6 One possibility:

Designing special quantum system in the laboratory as a special quantum computer.

6 Simulating the quantum dynamics of the O(3)nonlinear sigma model with construction of a laboratory system based on present-day technology.

- 6 1+1 dimensional O(N) nonlinear sigma model
- 6 The model is described by:

$$\mathcal{L} = rac{\hbar}{2c} \partial_{
u} \boldsymbol{\sigma} \cdot \partial^{
u} \boldsymbol{\sigma} = rac{\hbar}{2c} \left[(\partial_t \boldsymbol{\sigma})^2 - c^2 (\partial_x \boldsymbol{\sigma})^2 \right]$$
 $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \cdots, \sigma_N) \in \mathbb{R}^N$

6 The interaction is introduced by the constraint:

$$\boldsymbol{\sigma}^2 = \sigma_1^2 + \sigma_2^2 + \cdots \sigma_N^2 = \frac{N}{q^2}$$

Many properties of sigma model are similar to Quantum Chromo-dynamics \longrightarrow Toy model:

- 6 Re-normalizable in 1+1 dimension
- 6 Asymptotic freedom:

$$g^2 \left(p^2 \gg \Lambda^2 \right) \propto \frac{1}{\ln(p^2/\Lambda^2)}$$

Non-vanishing vacuum condensates / trace anomaly:

$$<\hat{\mathcal{L}}> \neq 0$$
 , $<\hat{T}^{\nu}_{\nu}> \neq 0$

6 The model exhibits instantons (mapping of \mathbb{S}_2 onto \mathbb{R}^2)

The Analogue

 $\lambda \gg \Delta x \gg \gamma \gg \rho , \ \alpha \gg \delta$

6 The total Lagrangian for the system of electrons:

$$\mathcal{L} = \sum_{i} \left[\frac{m}{2} \, \dot{\boldsymbol{r}}_{i}^{2} - V(\boldsymbol{r}_{i+1}, \, \boldsymbol{r}_{i}) \right]$$

$$V(\boldsymbol{r}_{i+1}, \, \boldsymbol{r}_i) = \frac{e^2 \, \alpha^2}{4\pi \, \epsilon_0 \, \gamma^4} \, \frac{(\boldsymbol{r}_{i+1} - \boldsymbol{r}_i)^2}{4 \, \alpha + \Delta x \, / \, \ln(\Delta x / \delta)}$$

6 The continuum limit of \mathcal{L} generates the Lagrangian of the O(3) nonlinear sigma model:

$$\sigma = rac{\sqrt{3}}{g_{\mathrm{eff}}} rac{r_i}{
ho}$$
 (For $N=3$)

The effective Lagrangian for this model:

$$\mathcal{L}_{\text{eff}} = \frac{m \rho^2 g^2}{2N\Delta x} \left[\left(\partial_t \boldsymbol{\sigma} \right)^2 - \frac{e^2}{4\pi\epsilon_0 m} \frac{2\alpha^2 \Delta x^2 / \gamma^4}{4\alpha + \Delta x / \ln(\Delta x/\delta)} \left(\partial_x \boldsymbol{\sigma} \right)^2 \right]$$

The Lagrangian for sigma model:

$$\mathcal{L} = \frac{\hbar}{2c} \partial_{\nu} \boldsymbol{\sigma} \cdot \partial^{\nu} \boldsymbol{\sigma} = \frac{\hbar}{2c} \left[\left(\partial_{t} \boldsymbol{\sigma} \right)^{2} - c^{2} \left(\partial_{x} \boldsymbol{\sigma} \right)^{2} \right]$$

 \implies effective propagation speed:

$$c_{\text{eff}} = c_0 \sqrt{\frac{e^2}{4\pi \epsilon_0 m c_0^2}} \frac{2\alpha^2 \Delta x^2 / \gamma^4}{4\alpha + \Delta x / \ln(\Delta x / \delta)}$$

6 The effective coupling for N = 3:

$$g_{\text{eff}} = \sqrt{3} \frac{\gamma}{\rho} \left(\frac{4\pi \epsilon_0 \hbar^2}{m e^2} \frac{4\alpha + \Delta x / \ln(\Delta x/\delta)}{2\alpha^2} \right)^{1/4}$$

determines the value of the running coupling at a length scale corresponding to the lattice spacing Δx .

In analogy to Quantum Chromo-dynamics (Λ_{QCD}) :

$$g_{\mathrm{eff}}^2 \ (p^2 \gg \Lambda_\sigma^2) \ \propto \ \frac{1}{\ln(p^2 / \Lambda_\sigma^2)}$$

6 The condition for scale:

$$p = \frac{1}{\Delta x} \quad \Rightarrow \quad \Lambda_{\sigma} \,\Delta x \;\ll \; 1$$

- Interaction energies of the disturbances must be much smaller than the energy gap between the ground state and the first excited state.
- 6 For the nonlinear sigma model, this gap is determined by the induced scale Λ_{σ} :

Energies of all perturbations $\ll \hbar c_{\text{eff}} \Lambda_{\sigma}$

The temperature must be small enough :

 $k_B T \ll \hbar c_{\text{eff}} \Lambda_{\sigma}$

The kinetic terms due to inductances of the wires are negligible for a sufficiently large slow-down:

$$LI^2 \ll m \dot{\boldsymbol{r}}^2 \longrightarrow 4\alpha \left(\frac{c_{\text{eff}}}{c_0}\right)^2 \left(\ln \frac{\Delta x}{\delta}\right) / \Delta x \ll 1$$

6 Spin-spin and spin-orbit couplings are negligible.

Phase Diagram

- 6 Fixing the electron spins by an external magnetic field?
- 6 Phase diagram in terms of the temperature T and chemical potential $\mu \rightarrow$ Particle numbers N?
- 6 Noether charge of O(3) symmetry:

$$Q = \frac{1}{c_{\text{eff}}} \boldsymbol{n} \cdot \int dx \, \boldsymbol{\sigma} \times \dot{\boldsymbol{\sigma}} = \sum_{i} \boldsymbol{n} \cdot \frac{\boldsymbol{L}_{i}^{e}}{\hbar}$$

Grand-canonical Hamiltonian:

$$\hat{H}_{gc} = \hat{H}_0 + \mu_N \hat{N} = \hat{H}_0 + \mu_Q \hat{Q}$$

Phase Diagram

External magnetic field is equivalent to chemical potential:

One can fix the electron spins with a small external magnetic field: $B \ll B_{crit}$

Experimental Parameters

 $\delta = 100 \ nm, \qquad \rho = 400 \ nm$ $\alpha = 500 \ nm, \qquad \gamma = 2.5 \ \mu m$ $\Delta x = 12.5 \ \mu m$

Silica nanowire $50 \ nm$ thickness Harvard University

We obtain:

 $g_{\text{eff}} = \mathcal{O}(1), \qquad c_{\text{eff}} \approx 10^4 \ m/s$

- $\Lambda_{\sigma}^{-1} \approx 125 \ \mu m, \quad \hbar c_{\text{eff}} \Lambda_{\sigma} \approx 600 \ \mu K$ $T = \mathcal{O}(10 \ \mu K)$
- Present limit for solids:

Quantum simulator for the O(3) nonlinear sigma model – p.17/19

Experimental Parameters

 $\begin{aligned} &\delta = 1 \ nm, &\rho = 12 \ nm \\ &\alpha = 5 \ nm, &\gamma = 25 \ nm \\ &\Delta x = 125 \ nm \end{aligned}$

6 We obtain:

 $c_{\text{eff}} \approx 10^5 \, m/s, \qquad g_{\text{eff}} = \mathcal{O}(1)$ $\hbar c_{\text{eff}} \Lambda_{\sigma} = \mathcal{O}(1 \, K)$ Silica nanowire 3 nm thickness City University of Hong-Kong

6 This range provides a wide window of opportunity.

- Constructing a quantum simulator for the O(3)
 - nonlinear sigma model (with present-day technology).
- 6 Proof of principle and modeling feasibility
 → Quantum Chromo-dynamics?
- Direct access to the quantum state and investigation of the strong entanglement.
- 6 Non-perturbative properties \rightarrow instanton density.
- 6 Creating particles \longrightarrow S-matrix.